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Understanding how and why animal secretions vary in property has impor-
tant biomimetic implications as desirable properties might covary. Spider
major ampullate (MA) silk, for instance, is a secretion earmarked for
biomimetic applications, but many of its properties vary among and between
species across environments. Here, we tested the hypothesis that MA silk
colour, protein structure and thermal properties covary when protein uptake
is manipulated in the spider Trichonephila plumipes. We collected silk from
adult female spiders maintained on a protein-fed or protein-deprived diet.
Based on spectrophotometric quantifications, we classified half the silks as
‘bee visible” and the other half ‘bee invisible’. Wide angle X-ray diffraction
and differential scanning calorimetry were then used to assess the silk’s
protein structure and thermal properties, respectively. We found that although
protein structures and thermal properties varied across our treatments only the
thermal properties covaried with colour. This ultimately suggests that protein
structure alone is not responsible for MA silk thermal properties, nor does it
affect silk colours. We speculate that similar ecological factors act on silk
colour and thermal properties, which should be uncovered to inform
biomimetic programmes.

1. Introduction

Biomimetics is an emergent scientific endeavour wherein researchers explore the
properties of natural phenomena as inspiration for new synthetic designs and
developments [1]. For instance, the mechanisms enabling animals to vary the
colour of secretions such as hair, feathers, mucous and silk over time or across
environments intrigues biomimetics research as the underlying principles inspire
the development of innovative new coloured materials [2-6]. Likewise, the
thermal properties of animal secretions may inspire the creation of new heat
and light sensing materials [7].

Spider major ampullate (MA) silk is considered one of nature’s toughest
materials [8]. It thus comes as no surprise that many researchers have attempted
to understand the intricacies of its structure—function relationship with a vision to
create silk biomimetic products for medical and engineering applications (see
reviews by Blamires et al. [8], Eisoldt et al. [9], Hsia et al. [10] and Ebrahimi et al.
[11]). Consequently, we know that MA silk is hierarchically organized with a
lipid, protein and glycoprotein-rich skin around a fibrous outer and inner core
[8,12,13]. The silk core is traditionally thought to be composed of two proteins
called spidroins: MA spidroin 1, or MaSp1, and MA spidroin 2, or MaSp2 (but
see Babb et al. [14] and Correa-Garhwal et al. [15] for the potential inclusion of
additional spidroins). MaSp1 consists of repeating polyalanine, (GA),, (GGX),
and (A), amino acid motifs (G=glycine, A =alanine and X=other amino
acids) that are expected to combine to promote the formation of g-sheet secondary
structures in the assembled fibres [16,17]. The MaSp2 protein on the other hand is
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thought to consist of additional multiple (GPGXX),, motifs
(where P =proline) and has been predicted to form the so-
called ‘amorphous region’, consisting of disordered type II
B-turns and other secondary structures [18,19]. These secondary
structures form a range of crystalline and amorphous protein
tertiary structures, which have been considered the basis for
spider silk’s remarkable mechanical performance [8,13,20].

In addition to its impressive mechanical properties, spider
MA silk has inimitable optical and thermal properties [21-23].
Understanding silk optical properties may inspire biomimetic
applications such as the development of new highly efficient
lenses, sensors or optic fibres [24-26]. It thus provides for a
fruitful line of research. We know that MA silk has a high
refractive index despite being largely translucent [21,22,27],
which explains why it is visible to the naked human eye even
though it is exceptionally thin (diameter: approx. 1-5 pm).
We also know that the visibility, coloration and brightness of
MA silk varies across environments, both among spider
species and between individuals [28-31].

The skin, which primarily functions to prevent fibre biode-
gradation [32], is consistently smooth and homogeneous across
species and individuals [33,34] so surface features are unlikely
to induce inter- or intraspecific variation in coloration. Why
MA silk should vary in colour among and between species
and individuals is thus unknown. Nevertheless, there are
some potential explanations. First, the shape and thickness
of the skin, the appearance of cracks or microfibrils, twisting
and accumulation of particulate debris may affect some of
the silk’s optical properties [26,35,36]. Second, pigments and
other compounds, such as phenols, porphyrins, quinones and
carotenoids, may reside within the skin layer and are thought
to be responsible for some of the species-specific silk coloration
variation [6,30,37,38]. Third, the S-sheet secondary structures
and crystalline tertiary structures of MA silk are anisotropic,
thus highly birefringent [39,40]. Given that the size, density
and alignment of -sheets can vary across spider species [41],
this may contribute to variation in MA silk optical properties
across species. Fourth and finally, the thermal properties of
MA silk, particularly the silk’s enthalpy (a measure of the
total internal energy in the silk thread), glass transition tempera-
ture (T;;) and melt temperature, are hypothesized to covary with
the size and alignment of the silk’s crystalline structures and,
thus, correlate with its birefringent properties [42,43]. The inter-
actions between thermal properties and protein structure are
observably manifested upon exposure to water as a downward
shift in T, due to changes in structural alignment [44].

While it might be deduced that there should be evolution-
ary and ecological consequences for environmentally induced
variation in silk coloration across species and/or individuals,
it is not readily apparent what these may be. It has been
deduced that more colourful or visible silks might alert
prey to the presence of the web or predators to the presence
of the spider [45]. Accordingly, MA silk should always be
inconspicuous against its background for the spider to effec-
tively capture prey and avoid predators. In some instances,
nonetheless, MA silk seems to reflect light at wavelengths
selectively attractive to certain prey insects [28,46,47]. The
consequent fitness benefit of such selective visibility is greater
prey capture success, which may provide an evolutionary
explanation for the conspicuous yellow (to the human eye)
coloration of the silks of Nephila or Trichonephila spp. [29].

Here, we investigated how a spider’s diet relates to silk
colour and the underlying structural mechanisms and

covarying properties. We know that the protein composition [ 2 |

of the spider’s diet can, to a certain extent, influence spider
silk coloration [48]. Whether this is a product of a change in
pigment deposition as different nutrients are made available,
or a consequence of changes in birefringence accompanying
the changes in protein structural properties associated with
such dietary shifts [41,49] are unknown. If variation in silk
colour is a consequence of changes to protein structures, then
both the structures responsible and thermal properties
should covary with coloration across diets. We accordingly
tested our prediction by quantifying MA silk coloration
(as spectral reflectance functions), crystalline secondary struc-
tures and thermal properties in the spider Trichonephila
plumipes (formerly Nephila plumipes, see Kuntner et al. [50]
for nomenclature).

2. Material and methods
2.1. Spiders

We used adult female T. plumipes collected from suburban Sydney,
Australia for the following experiments. We measured their body
length and width to +0.1 mm using digital Vernier calipers (Caliper
Technologies Corp., Mountain View, CA, USA) and mass to +0.001 g
using an electronic balance (Ohaus Corp., Pine Brook, NY, USA).
Using these data, we took 30 individuals of similar mass that
appeared not to be gravid to the laboratory at the University of
New South Wales, Sydney, for the following procedures.

2.2. Experimental feeding regimes

Spiders were initially placed in 115 mm (wide) x 45 mm (high)
plastic circular containers with perforated wire mesh lids, as
described by Blamires et al. [41,48,49], and fed a 30% weight per
volume concentration (w/v) glucose solution daily over 5 days.
This feeding regime ensured that all influences of recent diet on
protein structure or silk coloration were minimized [48]. We
reweighed all of the spiders after the fifth day of feeding and
removed one individual that lost excessive mass after constructing
an eggsac. The remaining spiders were randomly allocated into
two treatments: protein-fed (P) or protein-deprived (N).

The solution used for the protein-fed treatment was identical to
that described by Blamires ef al. [41,49]: a mixture of 10 g of a 10%
albumin solution with 6 g of sucrose in 60 ml of water. The sol-
ution for the protein-deprived treatment was 8 g of sucrose in
30 ml of water. We fed the spiders the solutions by placing a
20 pl droplet onto their chelicerae using a micropipette. The spi-
ders were fed the respective treatments over 10 days. After
completing the experiment, we re-weighed all of the spiders and
excluded any that lost excessive mass and/or built an eggsac (i.e.
one from each treatment).

The above experiment was performed under controlled
temperature (approx. 25°C) and humidity (approx. 50% RH) in
still air.

2.3. Silk collection

Upon completing the feeding experiments, we collected MA silk
from all of the 26 remaining spiders (13 per treatment) for spectro-
photometry, wide-angle X-ray diffraction (WAXS) and differential
scanning calorimetry (DSC) analyses as follows. We firstly anaes-
thetized all of the spiders using carbon dioxide and placed them
ventral side up on a foam platform and immobilized them using
non-adhesive tape and pins. We then carefully collected a single
MA silk thread from the spinnerets. This procedure was performed
under a dissecting microscope to ensure that a single thread from
one spinneret was collected. An electronic spool rotating at
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1 m min~" was used to reel silk threads from each spider by two
different collection methods.

First, to collect the silk for both spectrophotometry and WAXS
a single MA silk thread was pulled across 3 mm x 1 mm titanium
frames containing 0.5 mm x 0.5 mm windows. We then spooled
the silk for 1h, which resulted in approximately 1000 rounds
being collected across the frame windows (see Benam1 et al. [51]
for details). Second, the silk was wrapped around a glass tube con-
nected to the rotating spool for another 1h. This resulted in
approximately 15 mg of thread being wound onto the glass tube.
The thread was scraped off the tube using a scalpel and bundled
and placed into a 2 ml Eppendorf tube.

2.4. Spectrophotometry

We measured the reflectance spectra over the 300-700 nm wave-
band for the frame mounted silks using a Jaz spectrophotometer
(Ocean Optics Inc., Largo FL, USA). We used the frame mounted
silks for this process as each of the rounds of thread were in paral-
lel, thus thread orientation could not interfere with our
spectrophotometric measurements. The spectrophotometer was
connected to a QR200-7UV-VIS reflection probe, held perpendicu-
lar to the sample, and a laptop running the program OceanView
1.6.3 (Ocean Optics, Inc.) via a series of SMA 905 optical fibres
(to 0.22 numerical aperture), a reading fibre and a halogen light
source (DT-1000, Ocean Optics, Inc.). Labsphere certified white
(SRS-99-010) and black (SRS-02-010) reflectance standards [52]
were used to calibrate the spectrometer to 100% and 0% reflec-
tance, respectively. The area captured in all instances was 2 mm?,
and the integration time was 150 ms. Three repeated measure-
ments for each silk bundle and the standards were taken in a
dark room against a black cardboard background (corroborated
against the Labsphere black standard). We subsequently plotted
reflectance curves representing an average of the three repeated
measurements per individual spider.

To interpret the reflectance spectra attained for the silks in a
biologically relevant context (i.e. how they were viewed by prey),
we performed visual models to ascertain whether any of the silks
produced were viewed differently by honeybees, a common prey
for T. plumipes in Sydney. We accordingly calculated the relative
quantum flux absorbed by honeybee photoreceptors (P) across
the 300-700 nm waveband using the following equation:

700
p RJ IsSWDWAA, 1)
300

where (1) is the spectral reflectance function of the silk, S(2) is
the combined spectral sensitivity function of the six photo-
receptors within a honeybee ommatidium [53], and D) is the
daylight spectrum (CIE Standard Illuminant D65 [54]). The sen-
sitivity factor (R) is determined by the following equation:

1
R= 700 4
100 BOS(MD() dA (2.2)

where (1) is the spectral reflection function of a typical veg-
etation background ascertained according to Blamires et al.
[55]. We assumed that the honeybee photoreceptors were
adapted to background coloration and that the photoreceptors
displayed half their maximum response at all times.

The excitation (E) index of honeybee UV, blue and green
photoreceptors while viewing each silk against a green back-
ground were subsequently estimated from their quantum flux
values (P), using the equation below, derived from the colour
hexagon model of Chittka [56]:

E=—. (2.3)

We also estimated the discriminability of the silks by a honeybee
viewer using the receptor-noise limited model, assuming a
Weber fraction of 0.13, log-transformed quantum catches and a
relative UV: blue: green receptor density of 1: 0.47: 4.41 [57,58].
Our results were qualitatively unchanged from those detailed
below for the hexagon model, with ‘white’ silks estimated to
be indiscriminable (t;o=—1.25, p=0.881) and ‘yellow” silks dis-
criminable (t;3=2.34, p=<0.001) considering a threshold of one
just noticeable distance. Estimated colour-distances were also
highly correlated between hexagon and receptor-noise models
(r=0.98). We thus refer to the results of the hexagon model hen-
ceforth, since it represents the most rigorously validated model
for honeybee viewers [56,59]. We performed the visual models
using the R package ‘pavo’ v. 2.2 [60].

2.5. Wide-angle X-ray diffraction analysis

WAXS provides detailed information on silk protein structures
across secondary and tertiary levels. We accordingly measured
the size, density and orientation of the crystalline and amorphous
structures of the frame-mounted silks using WAXS at the SAXS/
WAXS beamline at Australian Synchrotron, Melbourne, Australia.
We taped each of the silk-containing frames to a sample plate sup-
plied by the Centre. The plates were mounted onto a holdfast a
distance of 330 mm away from the incident X-ray beam. The
beam size was confined by a collimator 0.5 mm in diameter. A digi-
tal camera was set up enabling us to move the specimens into the
beam line from outside the experimental hutch. We exposed each
silk sample to the beam for 10-60 s depending on its density. The
radiation scattered from each sample was detected by a Mar 165
imaging plate over a Q range of approximately 1.45 A. Two-
dimensional WAXS images were developed using the program
Scatterbrain (Australian Synchrotron, Melbourne, Australia),
from which the: (i) scattering parameter (g), (ii) diffraction angles
(20), (iii) azimuthal angles, (iv) intensity peaks (I,) and (v) full
width and half width maximum intensities of the 26 and azi-
muthal angles were calculated. These parameters allowed us to
thereupon calculate: (i) d-spacing (or relative distances between
pleated B-sheet) among the crystalline structures, (ii) relative crys-
talline intensity ratios (Inz0/ Iamorphous a0d I210/ Iamorphous) With Ipzo,
10 and Limorphous, representing the sum of the scattering intensity
at the (0 2 0) and (2 1 0) Bragg reflections and the amorphous halo,
respectively, (iii) crystallinity index (X,), representing an estimate
of size of B-sheet crystallites and (iv) Herman’s orientation function
(fJ). Details pertaining to the application, analytical procedures
and equations used in the WAXS analyses are found elsewhere
[41,49,51].

2.6. Differential scanning calorimetry

DSC detects the heat flow into or out of biological polymeric
materials, such as silks undergoing phase transitions [61,62]. It
has thus been used to measure the enthalpy, degradation, crystal-
lization, melt temperatures and T of silks (see [62-64] and the
electronic supplementary material). While not a direct measure
of protein structure, it has been used by some researchers to
infer protein secondary and tertiary structures in silk [63-65].
We nevertheless used DSC herein to determine the parameters:
(i) melt temperature, (ii) Ty and (iii) total internal enthalpy of
the silks collected on glass tubes. The full procedures are outlined
in the electronic supplementary material.

Each silk sample was placed individually within Tzero alu-
minium DSC pans with hermetic lids sealed with a Tzero press
(TA Instruments, Austin, MN, USA) at the Centre for Advanced
Macromolecular Design (CAMD), Faculty of Engineering, Univer-
sity of New South Wales. Conventional mode DSC was performed
using a Q20 differential scanning calorimeter (TA Instruments,
Austin, MN, USA). The rate of heating was set to 3°C min~! over
the =50 to +200°C temperature range and modulation amplitude

66106107 9L ua3ul 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol H



was set at 1°C with a period of 60 s. A blank pan (i.e. one without a
sample added) was prepared as a reference and simultaneously
added to the calorimeter along with the sample pans. We there-
upon estimated T, melt temperature and enthalpy, as described
in the electronic supplementary material.

2.7. Statistical analyses

We used one sample f-tests to compare the colour contrast values,
calculated in hexagon units, as the Euclidean distances between
the summed excitation indices for the calculated honeybee UV,
blue and green photoreceptors over colour space, with a discrimi-
nation threshold value of 0.10, i.e. we assumed differentially
conditioned bees to always view the silks [59,66]. We also calcu-
lated the contrasts between the green photoreceptor excitation
values and the vegetation background to estimate the achromatic
contrast values and compared them with the 0.10 discrimination
threshold [67,68]. Where an individual silk exceeded the chromatic
or achromatic discrimination threshold we considered them to
be ‘bee visible’, whereas those that did not exceed any of the
discrimination thresholds were considered ‘bee invisible'.

We used discriminant function and least significant differ-
ence post hoc analyses to determine whether the: (i) d-spacing,
crystalline intensity ratios, crystallinity indices and/or Her-
man’s orientation functions and (ii) degradation temperature,
T,, and enthalpy varied between the protein-fed and protein-
deprived treatments. We used a categorical Pearson’s j>-test
to ascertain whether the proportion of silks that we classified
as bee visible and bee invisible differed across treatments.
Prior to performing these analyses we checked the data for nor-
mality, linearity and homoscedasticity using quantile-quantile
and probability plots.

To determine whether changes to silk protein structures
and thermal properties covaried with silk coloration across
diets we plotted redundancy analysis (RDA) ordinations [69] of
protein structures and thermal properties against silk visibility
(classified as bee visible or bee invisible as explained above).
The individual WAXS and DSC parameters were collapsed to
first redundancy variables for the RDA. Where ordinations
showed across parameter differentiation between the bee visible
and bee invisible silks we interpreted this as indicating that silk
coloration was associated with its protein structures and/or
thermal properties.

3. Results

The spectral reflectance functions for the MA silks of all indi-
vidual spiders were highly variable across both of the
treatments (figure 1). The mean chromatic and achromatic con-
trast of silks from each of the feeding treatments fell below the
detection threshold for (x3; = 0.110; p = 0.597; see mean values
in figure 2a,b). Nevertheless upon closer examining the data
points in figure 2, it is evident that approximately half of all
silks (i.e. 14 of 26) could be classifiable as bee visible and the
others (12 of 26) could be classifiable as bee invisible based
on their absolute colour contrast values, independent of the
treatment (see data points in figure 2a,b). Representative reflec-
tance spectra for each of these silks are shown in figure 3a. The
silks that were classified as bee visible appeared yellow or
golden to the naked human eye, while those classified as bee
invisible appeared white to silver to the naked eye (figure 3b).

Our discriminant function analyses revealed that the WAXS
derived d-spacing, I>10/lamorphous and Herman’s orientation
functions differed between the silks of the protein-deprived
and protein-fed spiders (tables 1 and 2), as did the DSC derived
degradation temperature, Ty, and enthalpy (tables 3 and 4;

100
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Figure 1. Reflectance spectra of the silks from the P-treatment spiders (blue
curves) and N-treatment (red curves) spiders. (Online version in colour.)
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Figure 2. Scatter and means-error plots of chromatic (@) and achromatic (b)
contrast values of silks from both N and P treatments. Yellow data points of
the scatter plots represent measurements for each silk classified as bee visible
and the silver data points represent those for silks classified as bee invisible.
Dots in the means-error plots represent mean values and the whiskers rep-
resent £1 s.e. The dotted line at 0.10 in each plot shows the threshold value
for dassification as bee visible. The coloured dots in the figure refer to the
colours of each silk as seen by the human eye. (Online version in colour.)

see also electronic supplementary material, figures S1 and S2,
respectively, for WAXS images and heat flow versus
temperature thermographs across treatments).

Our RDA ordinations nevertheless showed that while silk
colour explained approximately 53% of the variance in
protein structures, it was not associated with any of the struc-
tural parameters we measured using WAXS (figure 44). On
the other hand, silk colour explained approximately 95% of
the thermal property variance, and our ordinations (figure 4b)
and the DSC thermographs (electronic supplementary
material, figure S3) showed that the degradation temperature
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Figure 3. (a) Reflectance spectra of the bee visible silks (yellow line) and
bee invisible silks (silver line). (b) Examples of bee visible silk (the yellow/
golden silk on the left) and bee invisible silk (the white/silver silk on the
left) as they appeared to the human eye when wound around the titanium
frames in preparation for spectrophotometry and WAXS. (Online version in
colour.)

and Ty of the bee visible silks were distinctly different from
those of the bee invisible silks.

4. Discussion

We deprived the spider Trichonephila plumipes of protein, and
performed spectrophotometry, WAXS and DSC analyses on
its MA silks to investigate whether the changes in silk protein
structures and/or thermal properties were associated with
any changes in silk coloration. We found that while the
protein structures and thermal properties varied between
treatments, only the thermal properties were associated
with silk colour, and that this association occurred irrespec-
tive of protein intake. We thus suggest that protein
structures alone are not responsible for MA silk thermal
properties and they do not drive silk colour.

About half of all of the silks we examined across both
treatments could be classified as bee visible and the other
were classifiable as bee invisible. Moreover, the bee visible
silks always appeared yellow/golden to the human eye,
while the bee invisible silks always appeared white/silver
to the human eye. We would like to note that in the field
we almost always observe spiders in webs comprised of
yellow silk. Nevertheless, the fact that we had substantial
colour variation in the silks collected in the laboratory
(yellow to white) allowed us to compare the characteristics
of the different coloured silks more closely and make two
broad conclusions about the colour of T. plumipes silk. Firstly,
the yellow and white colours are not related to the spider’s
protein intake, at least under the regimes tested herein. Sec-
ondly, silk thermal properties but not protein structure
correlated with silk colour. The ecological implications for

silk coloration variation across species/individuals are not [ 5 |

known, partly because the colour variation remains, until
now, unquantified. Hence our findings provide valuable
insights into the mechanisms and consequences of silk
coloration variation.

Our results suggest that changes in silk protein structures
do not affect silk colour via variation in the silk’s refractivity
or birefringence. We thus expect the most likely cause of the
yellow or white coloration observed in T. plumipes silk to be
pigment deposition, as has been speculated for Trichonephila
clavipes [6,37]. We do not currently know which pigments
are present in T. plumipes MA silks. Putthanarat et al. [37]
speculated that depositions of hydroxylated benzoquinone,
naphthaquinone and other quinones within the silk skin are
responsible for the yellow coloration in T. clavipes silks.
Hsiung et al. [6] on the other hand found evidence that
B-carotene deposition was responsible for yellow coloration
in Nephila pilipes MA silk.

Various carotenoids induce orange and yellow coloration
in moth cocoon silks [70-73]. Since spiders cannot synthesize
B-carotene de novo, the pigments need to be taken up via the
spider’s diet [6,73]. Our finding that half of the silks we
retrieved were yellow irrespective of protein intake suggested
that the yellow coloration of T. plumipes silk is unlikely to be
due to carotinoid intake and deposition within the silk skin.
We nonetheless occasionally noticed that the yellow-coloured
silk became white toward the end of silk collecting,
suggesting that the spiders might have been depleted of a
pigment, or other colour inducing compound after approxi-
mately 2 h of being forcibly silked. Ongoing analyses using
nuclear magnetic resonance, Fourier transform infrared spec-
troscopy and pigment transcript analyses should, in time,
confirm which pigments, if any, induce the yellow/golden
colour of T. plumipes MA silks.

An examination of figure 1 shows a more marked modu-
lation at approximately 470-500 nm, i.e. within the blue to
green region, in the reflectance spectra of the silks of spiders
from the protein-fed treatment (blue curves) compared to
those of spiders from the protein-deprived treatment (red
curves). The modulations were however not manifested, as
both of our visual models found that the protein-fed treatment
spider silks were not any more discriminable by honeybees
than the protein-deprived treatment spider silks. This was
likely a consequence of the green background against which
the silks were contrasted also having a modulation in the
green region of the spectrum. We cannot say from examining
reflectance spectra alone whether these modulations indicate
the presence of pigments, such as porphyrins, variation
within the surface or structural features, or are an anomaly.
We nevertheless expect that the presence of a pigment is unli-
kely because porphyrin, or another other green pigment,
would need to be consumed in order to be expressed in silk [74].

The protein structural properties, particularly the orien-
tation and alignment of crystalline and amorphous
secondary structures, are thought to influence the thermal
properties of MA silk [36,63,75]. This likely explains why
both protein structures and thermal properties varied between
our feeding treatments. Nevertheless, a lack of any significant
association between T. plumipes silk’s protein structures, ther-
mal properties and coloration suggests that factors other than
protein structures are affecting the thermal properties and
coloration. We do not know why the thermal properties and
coloration of T. plumipes MA silk covaried independent of

66106107 9L ua3ul 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol



Table 1. Results of a discriminant function and least significant difference post hoc analyses determining whether silk arystal sizes, arystalline intensity ratios, [}
crystallinity indices and Herman’s orientation functions varied between the four species. Comparisons of means (+1s.e.) across treatments. Significance of
p-values is indicated by asterisk.

d-spacing (nm) lo2o/lamorphous L10/lamorphous arystallinity index Herman'’s orientation

P-treatment 0.710 + 0.161 1.223 £0.005 1.017 £0.030 1342 +0.048 0.235+0.205
N-treatment 0 592 + 0 092 1 222 + 0 004 1 059 + 0 018 1.375 £ 0.072 0. 132 + 0 102

 Wik's lambda 0.101 0.088 0141 0091 013
partlal lambda 0 738 0 897 0 561 0 867 0. 572

Fremove (df.=124) 3598 1481 10577 1.983 9692
pvalue 0021 034 <0.001% 0132 <0001

tolerance 0792 0.269 0238 Nz T
1 tolerance 0.208 0 731 0.762 0328 0.416

Table 2. Results of a discriminant function and least significant difference post hoc analyses determining whether silk crystal sizes, crystalline intensity ratios,
crystallinity indices and Herman’s orientation functions varied between the four species. Raw coefficients of the canonical variables.
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roots removed eigenvalue canonical R Wilk's lambda

0 - 3.567 0.883 0.079 1105.093 15 - <0.001
1 1 719 0 795 0.363 42 052 8 <0 001
2 0012 0113 0.987 0534 3 0911

Table 3. Results of a discriminant function and least significant difference post hoc analyses to determine whether melt temperature, glass transition
temperature and enthalpy varied between the four species. Comparisons of means (£1s.e.) across the four species. Significance of p-values is indicated by
asterisk.

melt temperature (°C) glass transition temperature (°C) enthalpy ) g7")

P-treatment 193.56 + 4.36 147.93 + 1.64 22954+ 9480

 N-treatment 1968355 15234+ 1.11 258108681
i 1
e
Tt wm me e
el G e

'|t0|eran(e 0.179 0083 U 0116 T
p<005

Table 4. Results of a discriminant function and least significant difference post hoc analyses to determine whether melt temperature, glass transition
temperature and enthalpy varied between the four species. Raw coefficients of the canonical variables.

roots removed eigenvalue canonical R Wilk's lambda

0 373879 0998 <0.001 1369.192 9 - <0.001
1 12 941 0963 10.063 117311 4 <0 001
2 0 1336 O 343 0. 882 5 329 1 0 021

protein structures, but we suspect a combination of changes Water infiltrates hydrogen bonds between amorphous region
within the structural integrity and composition of the skin, proteins in MA silk, causing the crystalline and amorphous
including any pigment deposition, to be responsible. region proteins to become misaligned along the fibre’s axis
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Figure 4. RDA ordinations of the association between the variance in silk colour
and variance in (a) structural parameters measured using WAXS and (b) thermal
property parameters measured using DSC. (Online version in colour.)

without changes in density [76,77]. A change in crystalline align-
ment alone may be enough to significantly shift T, so the silk
becomes rubbery at room temperature (20-30°C) [36,38,76,771.
Water is therefore an agent that may simultaneously affect MA
silk thermal properties and protein structure. However, our
experiments were performed under controlled temperature
(approx. 25°C) and humidity (approx. 50% RH) conditions so
water infiltration probably had a minor effect on the protein
structures and/or thermal properties measured herein. It might
nonetheless explain why we calculated slightly lower T, values
than that deduced for other spider silks.

We found differences in the thermal properties of
T. plumipes silks between treatments and among the different
coloured silks as a consequence of significant variation in
heat flow across treatments and the different coloured silks.
An examination of our DSC thermographs revealed that
there were no major shifts in topography between treatments
or across the different coloured silks (i.e. they always showed
an endothermic response across the temperature range), and
T, was consistent at approximately 140-150°C, with melt
temperature peaks always observed at greater than 160°C,
and thermal degradation consistently commenced at around
180-200°C (see electronic supplementary material, figures S2
and S3). These values approximate the ranges reported for

other MA silks [63,75], with the exception of Tz which was mar- -

ginally lower. We also found that silk crystallinity did not vary
greatly between feeding treatments, or among the different
coloured silks. It seems therefore evident that there was no
major phase transition or crystalline region breakdown across
treatments or among the different coloured silks, ruling
out further water infiltration as a cause of thermal property
differences across the bee visible and bee invisible silks.

An additional possibility is that the two distinct silk colours
that we identified (bee visible and bee invisible) are unique to
the assumed honeybee viewer which, while appropriate given
our knowledge of prey composition for our focal spiders, does
not capture the full diversity of potential viewers nor viewing
conditions. Furthermore, we measured the spectra of silks
herein by wrapping them tightly around metal cards, meaning
the silks appeared different from what would be expected in a
web, where they are distributed more sparsely and orientated
in a multitude of different directions. With that said, the
models used and sample preparations also might affect the
colour classifications of the silk based on its visibility to differ-
ent insects. More testing is clearly required to ascertain the
visibilities of the silks to different prey or predators. Not-
withstanding, there are difficulties ascribing an ecological
function to any estimated colour classifications because the
light weight, translucency and exceptional thinness of silks
render them extremely difficult to discern by insects under
field conditions.

A further possibility that our findings suggest is that
the different silk colours might be more associated with the
regulation of silk thermal properties than any perceptual eco-
logical advantages, such as attracting prey [28,46,47]. Perhaps
subtle changes to skin size or composition (e.g. by the deposition
of pigments), or appearance (e.g. by twisting), ensures that the
silk proteins do not undergo unintended denaturation as temp-
erature and/or humidity changes over time. Conversely, silk
coloration may be selected for as a mechanism for attracting
prey under certain conditions and any subsequent changes in
thermal properties are an unavoidable artefact. Regardless of
the evolutionary or ecological consequences and mechanisms,
there are likely to be trade-offs between prey / predator attraction
and avoidance as consequences of enhanced/reduced silk visi-
bility and thermal properties as spider diets vary over time and /
or space. It is the balance of this trade-off that likely determines
whether T. plumipes silks appear visible or invisible to bees in
any environment. We have seen other spiders using similar
yellow-coloured silks when they build their webs in similar
open habitats to those exploited by T. plumipes (see the electronic
supplementary material, figure 54 for an example), suggesting
that other spiders may vary their silk coloration in a similar
way across diets or other ecological circumstance. Certainly,
more comparative analyses of silk coloration, spider diets,
web building, habitat preferences and the fitness benefits associ-
ated with the use of different coloured silks are warranted to test
these hypotheses.

A broader implication of our findings is that they suggest
that it is possible to develop biomimetic silk-like fibres with
variable protein structures, hence variable mechanical prop-
erties, while holding the optical properties constant and
vice versa. Nevertheless, thermal properties might inadver-
tently covary with optical properties. We thus recommend
further research focus on the mechanism of this covariation
so we can ascertain how to go about disentangling the
covarying parameters during fibre construction.

~
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